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How many of you have ever 
(accidentally) hardcoded secrets 
into a repository?



  

whoami

● Antonio Francesco Sardella

– m3ssap0

● Application Security Engineering 
Manager @ Prima

● Organizer of Meethack (Torino)

– https://meethack.it/

● Links

– https://m3ssap0.github.io

– https://github.com/m3ssap0

– https://infosec.exchange/@m3ssap0



  

Agenda

● Houston, we have a problem

● Detection is important…

● … but Prevention is better!

● Paved roads, the cultural 
change

● Let’s wrap it up!

● Questions?
https://en.wikipedia.org/wiki/Smokey_Bear



 

Houston, we have a problem



  

Leaked secrets could lead to data breaches

“Cost of a Data Breach Report 2024”, Ponemon Institute

● The usage of stolen or 
compromised credentials is the 
most common initial vector for a data 
breach.

– With a frequency of 16% and a cost 
of 4.81M USD.

● The malicious insider is the highest 
initial vector, in terms of cost, for a 
data breach.

– With a frequency of 7% and a cost 
of 4.99M USD.

● “Assume breach”



  

They are called secrets for a reason

Secrets encompass 
confidential information, 

such as: passwords, 
encryption keys, API 

tokens, digital 
certificates, etc.

Secrets are pivotal for 
authenticating and 

authorizing access to 
secured resources and 

systems.



 

Detection is important...



  

Detection lets you know when there is a problem
● Secrets detection is part of Static Application Security Testing (SAST).

● There are several tools, commercial or not, able to perform this kind of 
checks:
– gitleaks - https://github.com/gitleaks/gitleaks

– trufflehog - https://github.com/trufflesecurity/trufflehog

– ggshield - https://github.com/GitGuardian/ggshield

– detect-secrets - https://github.com/Yelp/detect-secrets

– git-secrets - https://github.com/awslabs/git-secrets

– Semgrep Secrets - https://semgrep.dev/products/semgrep-secrets

– ...

● The concepts are the same for all the tools!



  

Detection has its own limitations

Sometimes detection is easier…

aws_secret="AKIAIMNOJVGFDXXXE4OA"

Sometimes detection is harder…

password_field_label="password-fld-lbl-1"

my_password="$up3rP4ssw0rd!"



  

Centralize detection in CI/CD to spot problems

● It’s unrealistic to scale Application Security 
activities without leveraging on automation.

● Look for plugins for your CI/CD ecosystem.
– Gitleaks has an official GitHub Action.

https://github.com/gitleaks/gitleaks-action



  

You push a secret...



  

… and it’s detected!



  

Example of a GitHub workflow

https://github.com/gitleaks/gitleaks-action

name: gitleaks
on: [pull_request, push, workflow_dispatch]
permissions:
  contents: read
  discussions: write
  pull-requests: write
jobs:
  scan:
    name: gitleaks
    runs-on: ubuntu-latest
    steps:
      - uses: actions/checkout@v3
        with:
          fetch-depth: 0
      - uses: gitleaks/gitleaks-action@v2
        env:
          GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}

Allow access to commit list and to add 
comments.



  

Customize the solution based on your needs

● ~166 standard rules provided by Gitleaks.

● Rules are based on regexes.

● You can create your custom rules via TOML files and 
use them
– with the -c param of the executable

– or the GITLEAKS_CONFIG environment variable of the 
GitHub Action.

https://github.com/gitleaks/gitleaks/blob/master/config/gitleaks.toml



  

Example of a Gitleaks TOML file

https://github.com/gitleaks/gitleaks?tab=readme-ov-file#configuration

# Your custom Gitleaks configuration file.
title = "Your custom Gitleaks rules"

# Extending default rules.
[extend]
useDefault = true

[[rules]]
# Put your custom rules here.



  

Example of a Gitleaks rule

[[rules]]

id = "aws-access-token"

description = "Identified a pattern that may indicate AWS 
credentials, risking unauthorized cloud resource access and data 
breaches on AWS platforms."

regex = '''(?:A3T[A-Z0-9]|AKIA|ASIA|ABIA|ACCA)[A-Z0-9]{16}'''

keywords = [

    "akia","asia","abia","acca",

]

https://github.com/gitleaks/gitleaks?tab=readme-ov-file#configuration

Keywords are used for pre-regex check 
filtering.

Rules that contain keywords will perform 
a quick string compare check to make 
sure the keyword(s) are in the content 

being scanned.

https://github.com/gitleaks/gitleaks/blob/82d737d8519f6d55566435083498aaa078d68f45/config/gitleaks.toml#L125



 

… but Prevention is better!



  

Pre-commit hooks can prevent leaks

● A leaked secret – even if detected – is still a 
leaked secret.

● Pre-commit hooks can be configured in your 
workstation to perform scan locally, blocking 
dangerous commits and preventing leaks 
from happening.



  

How to setup a global pre-commit hook
● Install Gitleaks (it requires Go).

● Create a folder to store global hooks, for 
example: 

/home/<your_user>/gitconfig/hooks

● In that folder, create a file named exactly:

pre-commit

● In that file, write the script to perform the check 
(Python example in the next slide).

● Make the file executable.

● Edit global git config file, usually .gitconfig 
in your home, to add the lines on the right.

[core]

     hooksPath = 
/home/<your_user>/gitconfig/
hooks

[hooks]

     gitleaks = true



  

Example of global pre-commit hook in Python
def gitleaksEnabled():

    out = subprocess.getoutput('git config --bool hooks.gitleaks')

    if out == 'false':

        return False

    return True

if gitleaksEnabled():

    exitCode = os.WEXITSTATUS(os.system('gitleaks protect -v --staged --redact'))

    if exitCode == 1:

        print('Warning: gitleaks has detected sensitive information in your changes.')

        sys.exit(1)

else:

    print('gitleaks precommit disabled (enable with `git config hooks.gitleaks true`)')

https://github.com/gitleaks/gitleaks/blob/master/scripts/pre-commit.py

To check for changes in 
commits that have been 

git added. Redact secrets from 
logs and stdout.

Used to scan uncommitted 
changes in a git repo. This 
command should be used 
on developer machines.



  

Trying to commit a secret...



  

… it gets blocked on the dev workstation!



  

Alternative: the pre-commit Python framework
● https://pre-commit.com/

● Allows the usage of multiple hooks.

● Needs .pre-commit-config.yaml file in the 
repository.

repos:
  - repo: https://github.com/gitleaks/gitleaks
    rev: v8.19.0
    hooks:
      - id: gitleaks

https://github.com/gitleaks/gitleaks?tab=readme-ov-file#pre-commit



 

Paved roads, the cultural change



  

Make the wrong road also the hard one
● Paved roads aka secure defaults, golden paths, ...

● Give to software engineers solutions, not just problems to solve.

● Invest in the adoption of secrets management tools:
– HashiCorp Vault - https://www.vaultproject.io/

– Google Cloud Secret Manager

– AWS Secrets Manager

– Azure Key Vault

– ...

● Software engineers will have a concrete solution to their problem 
and you will effectively manage the secrets ecosystem.



  

Vault Agent can inject credentials in config files
● Credentials are centrally managed by the Vault Server.

– For example, they are periodically rotated.
● Vault Agent contacts the Server and auth*, retrieve credentials 

and produces config files that can be consumed by the 
applications.
– Useful technique to integrate “legacy applications”.
– A template is used to define the config file.

{{ with secret "database/creds/mysql-role" }}

[DATABASE]

MYSQL_HOST = database

MYSQL_USER = {{ .Data.username }}

MYSQL_PASSWORD = {{ .Data.password }}

MYSQL_DB = notes_webapp

{{ end }}

https://developer.hashicorp.com/vault/tutorials/vault-agent/agent-templates



  

(Recorded) demo time

https://github.com/m3ssap0/vault-webapp-integration-poc



 



 

Let’s wrap it up!



  

A problem, but complementary ways to solve it
● Secrets leaked in source code can be used by 

malicious actors to compromise other platforms in 
your ecosystem.

● Automatic tools exist to perform checks.
– Centralize the scan to scale.
– Customize the solution with your own rules.
– Prevent at development workstations.

● Invest in the culture and provide solutions via usable 
secure defaults.



 

Thank you!
Questions?

https://m3ssap0.github.io/assets/resources/talks/ldto2024_secrets_leakage.pdf

https://m3ssap0.github.io

https://github.com/m3ssap0

https://infosec.exchange/@m3ssap0
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