

Secrets leakage detection &
prevention

Linux Day (Torino, 2024-10-26)

How many of you have ever
(accidentally) hardcoded secrets
into a repository?

whoami

● Antonio Francesco Sardella

– m3ssap0

● Application Security Engineering
Manager @ Prima

● Organizer of Meethack (Torino)

– https://meethack.it/

● Links

– https://m3ssap0.github.io

– https://github.com/m3ssap0

– https://infosec.exchange/@m3ssap0

Agenda

● Houston, we have a problem

● Detection is important…

● … but Prevention is better!

● Paved roads, the cultural
change

● Let’s wrap it up!

● Questions?
https://en.wikipedia.org/wiki/Smokey_Bear

Houston, we have a problem

Leaked secrets could lead to data breaches

“Cost of a Data Breach Report 2024”, Ponemon Institute

● The usage of stolen or
compromised credentials is the
most common initial vector for a data
breach.

– With a frequency of 16% and a cost
of 4.81M USD.

● The malicious insider is the highest
initial vector, in terms of cost, for a
data breach.

– With a frequency of 7% and a cost
of 4.99M USD.

● “Assume breach”

They are called secrets for a reason

Secrets encompass
confidential information,

such as: passwords,
encryption keys, API

tokens, digital
certificates, etc.

Secrets are pivotal for
authenticating and

authorizing access to
secured resources and

systems.

Detection is important...

Detection lets you know when there is a problem
● Secrets detection is part of Static Application Security Testing (SAST).

● There are several tools, commercial or not, able to perform this kind of
checks:
– gitleaks - https://github.com/gitleaks/gitleaks

– trufflehog - https://github.com/trufflesecurity/trufflehog

– ggshield - https://github.com/GitGuardian/ggshield

– detect-secrets - https://github.com/Yelp/detect-secrets

– git-secrets - https://github.com/awslabs/git-secrets

– Semgrep Secrets - https://semgrep.dev/products/semgrep-secrets

– ...

● The concepts are the same for all the tools!

Detection has its own limitations

Sometimes detection is easier…

aws_secret="AKIAIMNOJVGFDXXXE4OA"

Sometimes detection is harder…

password_field_label="password-fld-lbl-1"

my_password="$up3rP4ssw0rd!"

Centralize detection in CI/CD to spot problems

● It’s unrealistic to scale Application Security
activities without leveraging on automation.

● Look for plugins for your CI/CD ecosystem.
– Gitleaks has an official GitHub Action.

https://github.com/gitleaks/gitleaks-action

You push a secret...

… and it’s detected!

Example of a GitHub workflow

https://github.com/gitleaks/gitleaks-action

name: gitleaks
on: [pull_request, push, workflow_dispatch]
permissions:
 contents: read
 discussions: write
 pull-requests: write
jobs:
 scan:
 name: gitleaks
 runs-on: ubuntu-latest
 steps:
 - uses: actions/checkout@v3
 with:
 fetch-depth: 0
 - uses: gitleaks/gitleaks-action@v2
 env:
 GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}

Allow access to commit list and to add
comments.

Customize the solution based on your needs

● ~166 standard rules provided by Gitleaks.

● Rules are based on regexes.

● You can create your custom rules via TOML files and
use them
– with the -c param of the executable

– or the GITLEAKS_CONFIG environment variable of the
GitHub Action.

https://github.com/gitleaks/gitleaks/blob/master/config/gitleaks.toml

Example of a Gitleaks TOML file

https://github.com/gitleaks/gitleaks?tab=readme-ov-file#configuration

Your custom Gitleaks configuration file.
title = "Your custom Gitleaks rules"

Extending default rules.
[extend]
useDefault = true

[[rules]]
Put your custom rules here.

Example of a Gitleaks rule

[[rules]]

id = "aws-access-token"

description = "Identified a pattern that may indicate AWS
credentials, risking unauthorized cloud resource access and data
breaches on AWS platforms."

regex = '''(?:A3T[A-Z0-9]|AKIA|ASIA|ABIA|ACCA)[A-Z0-9]{16}'''

keywords = [

 "akia","asia","abia","acca",

]

https://github.com/gitleaks/gitleaks?tab=readme-ov-file#configuration

Keywords are used for pre-regex check
filtering.

Rules that contain keywords will perform
a quick string compare check to make
sure the keyword(s) are in the content

being scanned.

https://github.com/gitleaks/gitleaks/blob/82d737d8519f6d55566435083498aaa078d68f45/config/gitleaks.toml#L125

… but Prevention is better!

Pre-commit hooks can prevent leaks

● A leaked secret – even if detected – is still a
leaked secret.

● Pre-commit hooks can be configured in your
workstation to perform scan locally, blocking
dangerous commits and preventing leaks
from happening.

How to setup a global pre-commit hook
● Install Gitleaks (it requires Go).

● Create a folder to store global hooks, for
example:

/home/<your_user>/gitconfig/hooks

● In that folder, create a file named exactly:

pre-commit

● In that file, write the script to perform the check
(Python example in the next slide).

● Make the file executable.

● Edit global git config file, usually .gitconfig
in your home, to add the lines on the right.

[core]

 hooksPath =
/home/<your_user>/gitconfig/
hooks

[hooks]

 gitleaks = true

Example of global pre-commit hook in Python
def gitleaksEnabled():

 out = subprocess.getoutput('git config --bool hooks.gitleaks')

 if out == 'false':

 return False

 return True

if gitleaksEnabled():

 exitCode = os.WEXITSTATUS(os.system('gitleaks protect -v --staged --redact'))

 if exitCode == 1:

 print('Warning: gitleaks has detected sensitive information in your changes.')

 sys.exit(1)

else:

 print('gitleaks precommit disabled (enable with `git config hooks.gitleaks true`)')

https://github.com/gitleaks/gitleaks/blob/master/scripts/pre-commit.py

To check for changes in
commits that have been

git added. Redact secrets from
logs and stdout.

Used to scan uncommitted
changes in a git repo. This
command should be used
on developer machines.

Trying to commit a secret...

… it gets blocked on the dev workstation!

Alternative: the pre-commit Python framework
● https://pre-commit.com/

● Allows the usage of multiple hooks.

● Needs .pre-commit-config.yaml file in the
repository.

repos:
 - repo: https://github.com/gitleaks/gitleaks
 rev: v8.19.0
 hooks:
 - id: gitleaks

https://github.com/gitleaks/gitleaks?tab=readme-ov-file#pre-commit

Paved roads, the cultural change

Make the wrong road also the hard one
● Paved roads aka secure defaults, golden paths, ...

● Give to software engineers solutions, not just problems to solve.

● Invest in the adoption of secrets management tools:
– HashiCorp Vault - https://www.vaultproject.io/

– Google Cloud Secret Manager

– AWS Secrets Manager

– Azure Key Vault

– ...

● Software engineers will have a concrete solution to their problem
and you will effectively manage the secrets ecosystem.

Vault Agent can inject credentials in config files
● Credentials are centrally managed by the Vault Server.

– For example, they are periodically rotated.
● Vault Agent contacts the Server and auth*, retrieve credentials

and produces config files that can be consumed by the
applications.
– Useful technique to integrate “legacy applications”.
– A template is used to define the config file.

{{ with secret "database/creds/mysql-role" }}

[DATABASE]

MYSQL_HOST = database

MYSQL_USER = {{ .Data.username }}

MYSQL_PASSWORD = {{ .Data.password }}

MYSQL_DB = notes_webapp

{{ end }}

https://developer.hashicorp.com/vault/tutorials/vault-agent/agent-templates

(Recorded) demo time

https://github.com/m3ssap0/vault-webapp-integration-poc

Let’s wrap it up!

A problem, but complementary ways to solve it
● Secrets leaked in source code can be used by

malicious actors to compromise other platforms in
your ecosystem.

● Automatic tools exist to perform checks.
– Centralize the scan to scale.
– Customize the solution with your own rules.
– Prevent at development workstations.

● Invest in the culture and provide solutions via usable
secure defaults.

Thank you!
Questions?

https://m3ssap0.github.io/assets/resources/talks/ldto2024_secrets_leakage.pdf

https://m3ssap0.github.io

https://github.com/m3ssap0

https://infosec.exchange/@m3ssap0

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32

